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Abstract. It is necessary to accurately determine the optical properties of highly absorbing black carbon (BC) aerosols to

estimate their climate impact. In the past, there has been hesitation about using realistic fractal morphologies when simulating

BC optical properties due to the complexity involved in the simulations and the cost of the computations. In this work, we

demonstrate that the predictions of optical properties like single scattering albedo (ω) and mass absorption cross-section (MAC)

can be improved compared to the conventional Mie-based predictions using a highly accurate benchmark machine learning5

algorithm. Unlike the computationally intensive simulations of complex scattering models, the ML-based approach accurately

predicts optical properties in a fraction of a second. There has been an extensive evaluation procedure carried out in this

study. Based on comparisons with laboratory measurements, it was demonstrated that incorporating realistic morphologies of

BC significantly improved their optical properties. The results indicate that it is possible to generate optical properties in the

visible spectrum using BC fractal aggregates with any desired physicochemical properties, such as size, morphology, or organic10

coating. Based on these findings, climate models can improve their radiative forcing estimates using such comprehensive

parameterizations for the optical properties of BC based on their aging stages.

1 Introduction

Black carbon (BC) aerosols are strong absorbers of solar radiation formed from incomplete combustion of fossil fuels, biofuels,

and biomass (Ramanathan and Carmichael, 2008; Bond et al., 2013). In the atmosphere, BC is usually found together with15

other types of aerosols, which form a coating around it (Sun et al., 2022). To understand the impact of BC on the environment,

global climate models require information about its light scattering and absorption properties (Jacobson, 2001). The most

common morphology assumed for such BC-containing aerosols in light scattering codes is a spherical core-shell shape (Bond

et al., 2013). The Lorentz-Mie theory (Mie, 1908) is often used to calculate the optical properties of such spherical BC particles

(Bohren and Huffman, 2008). However, studies have shown significant discrepancies in the results of Lorentz-Mie theory when20

compared with ambient measurements (Adachi et al., 2010; Wu et al., 2018).
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High-resolution Transmission Electron Microscopy (TEM) images showed that the BC particles have a fractal structure

composed of numerous spherules known as primary particles (Chakrabarty et al., 2006). The shortcomings of the simplified

spherical assumption of BC have caused the scientific community to develop towards the use of such realistic fractal aggregate

morphology for computing the optical properties of BC (e.g., Kahnert and Kanngießer, 2020; Romshoo et al., 2021; Kahnert,25

2010a; Wu et al., 2018; Liu and Mishchenko, 2018). Romshoo et al. (2022) showed that the discrepancy between modeled and

measured optical properties could be reduced to 10% when an aggregate morphology is used. To simulate the optical properties

of BC as fractal aggregates, the most commonly used methods are the Rayleigh-Debye-Gans (RDG) approximation (Sorensen,

2001), the discrete dipole approximation DDA (Purcell and Pennypacker, 1973), the Generalized Multi-particle Mie (GMM)

method (Xu and Gustafson, 2001) and the T-matrix method (Mishchenko et al., 1996). The Multi Sphere T-Matrix (MSTM)30

method has found widespread applications in the research field because of its lower computational cost than other methods like

the DDA while still providing good accuracy (Liu et al., 2019; Romshoo et al., 2021; Smith and Grainger, 2014).

Although MSTM has lower computational costs when compared to other numerical methods, a single simulation can still

take more than 24 hours, depending on the properties of the aggregate. Generally, larger particles with open-chain structures

take longer than smaller, compact aggregates. Consequently, pre-calculated databases have been developed for aggregate prop-35

erties to save time for both the construction of detailed aggregates and the time-consuming optical simulations (Liu et al., 2019;

Romshoo et al., 2021). Using these databases as look-up tables mitigates high computational overhead in large-scale applica-

tions. Still, this approach is limited by the range and step size of parameters chosen during the database creation. Previous work

has trained machine learning (ML) models on such databases (Luo et al., 2018; Lamb and Gentine, 2021) to overcome those

limitations. Once trained, those ML models provide predictions for BC optical properties in a fraction of a second. Luo et al.40

(2018) train a support vector regressor on a database generated using MSTM simulations. However, they do not consider any

coating and use pure BC aggregates in their experiments. Their results also suggest that their model has considerable difficulties

when attempting to predict optical properties for physicochemical properties not in the range of the training data. Lamb and

Gentine (2021) predict a specific BC fractal aggregate instance’s optical properties using a graph neural network. The input

graph contains one node for each primary particle and an edge between two nodes if the distance between the corresponding45

primary particles is less than some threshold. The authors generate their ground truth database using the MSTM algorithm,

but, like Luo et al. (2018), they do not consider any coating in their experiments.

This study demonstrates the use of a machine-learning-based approach to predict the optical properties of BC aggregates at

various aging stages, including coating, which is highly relevant for atmospheric aerosols. Combining this ML-based approach

with a laboratory dataset showed optical properties like single scattering albedo (ω) and mass absorption cross-section (MAC)50

can be predicted more accurately than with conventional Mie-based methods. A database of optical and physicochemical

properties of BC has been built for this study, which is an extension to the previous work by Romshoo et al. (2021). We

trained two ML methods on this database: kernel ridge regression (KRR) and artificial neural networks (ANN). Experiments

show that these models predict the optical properties of BC aggregates regardless of their size, morphology, or composition

at low computational costs and with high accuracy. The dataset used to train our ML models is freely available at Zenodo55
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(Romshoo et al., 2023a). Furthermore, we publish our ML models at GitHub1 together with an easy-to-use wrapper script

to allow for integration into higher-level applications. Our approach contributes to improving global climate model radiative

forcing estimates by parametrizing BC optical properties using realistic fractal aggregate morphology.

The manuscript is structured as follows: Section 2 provides an overview of the physical, chemical, and optical properties of

BC used in this study. Section 3 describes the machine learning techniques, including the data processing, machine learning60

algorithms, and evaluation procedures. In Section 4, the results demonstrate that realistic morphologies of BC can be used

to accurately predict optical properties at various stages of aging. Section 5 discusses how the results compare to laboratory

measurements of BC, discussing the atmosphere implications in detail, alongside potential limitations and challenges. The

conclusion of the study is presented in Section 6.

2 Database of physicochemical and optical properties of black carbon fractal aggregates65

The database for the physicochemical and optical properties of BC fractal aggregates has been designed to consider all the pos-

sible aging stages of BC. The database was created using 6192 particles of varying sizes, morphologies, and coating fractions.

There are 35 features in the database, which are categorized into 15 physicochemical features, 13 optical features, and seven

constants. In Fig. 1, you can see an overview of all the features of the database. In Table A1, the upper and lower bounds of the

main features are provided.70

2.1 Black carbon fractal aggregates

Black carbon is typically assumed to have a spherical morphology in atmospheric science (Bond et al., 2013). While this

assumption is computationally simple and widely applicable, it does not reflect the entire life cycle of BC (Romshoo et al.,

2021). Several stages are involved in the formation of BC, which result in changes in their morphology (Dong et al., 2018).

TEM images showed that the particles of BC are composed of small primary particles with a radius of 5-25 nm depending on75

the combustion source (Chakrabarty et al., 2006). As a result of nucleation and coagulation, the BC primary particles come

together to form chain-like aggregates, which then keep growing with aggregation (Sorensen, 2001). This concept led to an

advanced mathematical description of BC as fractal aggregates, known as fractal law (Mishchenko et al., 2002):

Npp = kf

(
Rg

a

)Df

, (1)

where a is the radius of the primary particle, Npp is the number of primary particles, kf is the fractal prefactor, and Df is the80

fractal dimension. Rg is the radius of gyration, which characterizes the spatial size of the aggregate.

Along with BC, a complex mixture of gas-phase organic compounds is co-emitted during incomplete combustion, forming

a coating around the BC aggregates (Gentner et al., 2017). As the BC aggregates stay in the atmosphere, they transform from

being hydrophobic to hydrophilic due to water deposition attracting other foreign coatings (Bhandari et al., 2019). The result

is that BC particles undergo complex changes in their morphology throughout atmospheric aging, transforming from bare to85

1https://github.com/jaikrishnap/Machine-learning-for-prediction-of-BCFAs
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Step 2: Calculation of optical properties: MSTMStep 1: Simulation of BC fractal aggregates Step 3: Derived optical properties 

Physicochemical properties 

Optical properties 

Constants

- Primary particle size (a)
- Number of primary particles (Npp)
- Total outer volume equivalent radius (ro)
- Total inner volume equivalent radius (ri)
- Mobility diameter (Dmob)
- Fractal dimension (Df)
- Fraction of coating (fcoating)
- Total volume of particle (Vtotal)
- Volume of the BC (VBC)
- Volume of the coating (Vcoating)
- Density of BC (𝜌B𝐶) 
- Density of OC (𝜌𝑂𝐶) 
- Total mass of particle (mtotal)
- Mass of the BC (mBC)
- Mass of the coating (mcoating)
- Mass ration (MR)

- Wavelength (l)
- Length scale factor
- Real part of refractive indices (nBC & ncoating)
- Imaginary part of refractive indices (kBC & kcoating)

- Optical efficiencies (Qext/abs/sca)
- Geometric cross-section (Cgeo)
- Optical cross-sections (Cext/abs/sca)
- Assymetry parameter (g)
- Single scattering albedo (SSA)
- Mass absorption cross-section (MACtotal/BC/coating)

Database of physicochemical and optical properties of BC fractal aggregates

Type of feature:

Figure 1. Overview of the various features of the database for physicochemical and optical properties of black carbon fractal aggregates. The

features are arranged based on the three steps of constructing this database. As the legend at the bottom indicates, the features are further

divided into physicochemical properties, optical properties, and constants.

partially coated aggregates and finally forming spherical structures embedded within external coatings (Coz and Leck, 2011).

Therefore, considering BC as fractal aggregates is necessary to represent all the different stages during their atmospheric aging

process.

2.2 Physicochemical features of the database

The BC fractal aggregate’s physicochemical features include size, mass, volume, morphology, and composition. Figure 2 gives90

some examples of the various BC aggregate particles generated in this study.

2.2.1 Size

Primary particle size (a). The primary particle size of a BC fractal aggregate is sensitive to the emission source or flame

condition. Biomass burning produces black carbon aggregates with comparatively large primary particles, ranging from 15 to

25 nm in radius (Chakrabarty et al., 2006). Diesel engines produce aggregates whose primary particle radius ranges between 1095

and 12 nm (Guarieiro et al., 2017). On the other hand, emissions from aircraft engines consist of particles with a radius as small

as 5 nm (Liati et al., 2014). There has also been research indicating that the size distribution of primary particles is largely

polydisperse (Bescond et al., 2014). Liu et al. (2015) pointed out that when considering a monodisperse and polydisperse

distribution of the radius of the primary particle, their resultant radiative properties differ. However, Kahnert (2010b) has

shown that particle light absorption is insensitive to the radius of primary particles when they are between 10 nm and 25 nm.100

4

https://doi.org/10.5194/egusphere-2023-2400
Preprint. Discussion started: 10 November 2023
c© Author(s) 2023. CC BY 4.0 License.



(a) Ns = 100; Df = 1.5; fcoating = 0%.  

(b) Ns = 100; Df = 2.1; fcoating = 0%.  

(c) Ns = 100; Df = 2.7; fcoating = 0%.  

(d) Ns = 250; Df = 1.5; fcoating = 50%.  

(e) Ns = 250; Df = 2.1; fcoating = 50%.  

(f) Ns = 250; Df = 2.7; fcoating = 50%.  

(g) Ns = 500; Df = 1.5; fcoating = 90%.  

(h) Ns = 500; Df = 2.1; fcoating = 90%.  

(i) Ns = 600; Df = 2.7; fcoating = 90%.  

Figure 2. Visualization of the various BC aggregate particles generated in this study. Fresh BC aggregates with no external coating are shown

in (a) to (c). Semi-aged BC aggregates with 50% coating are shown in (d) to (f). Aged BC aggregates with 90% coating are shown in (g) to

(i)

The black carbon fractal aggregates in this study have a monodisperse distribution of the radius of the primary particle. BC

aggregates were simulated with the inner diameter of the primary particle (ai) fixed at 15 nm. In contrast, the outer radius of

the primary particle (ao), consisting of the organics, varied between 15.1 nm to 30 nm with the coating fraction following Eq.

(3) in Romshoo et al. (2021).

Number of primary particles (Npp). The number of primary particles determines the overall size of the particle. The BC105

fractal aggregates were simulated by varying Npp by 5%, starting from 1 up to 1000.

Volume equivalent radius (r). The volume equivalent radius is defined as the radius of a sphere having the same volume as

the BC fractal aggregate, described in Eq. (A1) in the Appendix section. The outer volume equivalent radius (ro) was calculated

for the whole BC aggregate and the coating using ao. The inner volume equivalent radius (ri) was calculated using ai for the

BC aggregate without the coating, i.e., pure BC.110

Mobility diameter (Dm). The mobility diameter is the diameter of a sphere with the same migration velocity in a constant

electric field as that of the BC fractal aggregate (Flagan, 2001). Size spectrometers can measure Dm, which is interesting for

ambient and laboratory studies. We derived Dm for the entire range of Npp using the conversion given by Sorensen (2001)—see

Eq. (A2) in the Appendix section.

2.2.2 Mixing state: morphology and chemical composition115

Fractal dimension (Df ). The fractal dimension is a parameter for morphology that quantifies the folding of BC fractal aggre-

gates into spherical structures with increasing residence time. The value of Df increases as an aggregate grows into a more
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spherical frame. A Df of 3 is the maximum value describing a complete sphere, whereas Df of 1 represents an early stage

open-chain-like aggregate. In the early stages of the BC aging cycle, Df is usually between 1.5 and 1.9 (Wentzel et al., 2003).

When aggregates age in the atmosphere, they become more compact with a fractal dimension of up to 2.2 (Wang et al., 2017).120

A humid environment or foreign coatings may further reshape the BC fractal aggregates into more compact structures with a

fractal dimension of up to 2.6 (Bambha et al., 2013). In this study, the range of fractal dimensions was taken from 1.5 to 2.9

with a step size of 0.2.

Fraction of coating (fcoating). The fraction of coating is the percentage of coating volume compared to the total volume of

the BC fractal aggregate. To cover all aging stages, the coating fraction was taken from 1% to 90% in increments of 5%. Note125

that the coating composition was constrained to non-absorbing organics in this study.

2.2.3 Mass and volume

Volume. Three features in our database describe the volume of a BC aggregate: 1. Total volume of the particle (Vtotal), 2. the

volume of the BC (VBC), and 3. the volume of the organic coating (Vcoating).

Mass. Similarly, we include five features related to the mass of the BC aggregate: 1. Total mass of the particle (mtotal), 2.130

the mass of the BC (mBC), 3. the mass of the coating (mcoating), 4. the mass ratio of total mass to BC mass
(

mtotal
mBC

)
, and 5.

the mass ratio of coating mass to BC mass
(

mcoating

mBC

)
. We computed those values fixing the density of BC as ρBC = 1.8gcm−3

(Park et al., 2004), and the density of the organic coating as ρOC = 1.1gcm−3 (Schkolnik et al., 2007).

2.3 Optical model and the optical features of the database

The MSTM calculates the electromagnetic properties of a system that consists of a set of spheres (Mishchenko et al., 2004;135

Mackowski and Mishchenko, 2011). The tunable Diffusion Limited Aggregation (DLA) software (Wozniak et al., 2012) was

used to simulate BC fractal aggregates of various physicochemical properties. In this study, we use MSTM version 3.0 (Mack-

owski, 2013) written in FORTRAN to compute the electromagnetic properties for fixed and random orientations. For every BC

fractal aggregate, the MSTM algorithm presents an orientational average of the combined spherical expansions of each primary

particle. The MSTM code is best suited to calculate the optical properties of coated BC fractal aggregates since it consists of140

nested spheres. However, a limiting condition in MSTM is that primary particles cannot overlap. The optical features of the

database are given below:

Wavelength (λ). The optical properties were calculated in the visible spectrum, i.e., for λ ∈ {467nm,530nm,660nm}. The

real (n) and imaginary (k) part of the refractive indices for BC and coating (non-absorbing organics) at different wavelengths

(Kim et al., 2015) used in this study are summarized in Table A2.145

Optical efficiencies (Qext/abs/sca). The MSTM directly calculates the extinction efficiency (Qext), absorption efficiency (Qabs),

and scattering efficiency (Qsca) of the BC aggregate.

Geometric cross-section (Cgeo). The geometric cross-section is the area of the cross-section of a volume-equivalent sphere

given as Eq. (A3) in the Appendix section.
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Optical cross-sections (Cext/abs/sca). The optical cross-section is the product of efficiency and geometric cross-section—see150

Eq. (A4) in the Appendix section.

Asymmetry parameter (g). The asymmetry parameter is directly obtained from the MSTM, defined as the intensity-weighted

average of the cosine of the scattering angle.

Single scattering albedo (ω). The single scattering albedo is the ratio of scattering efficiency (Qsca) and extinction efficiency

(Qext), given as Eq. (A5) in the Appendix section.155

Mass absorption cross-section (MAC). The mass absorption cross section is calculated from the ratio of absorption cross

section (Cabs) and mass (m) as detailed in Eq. (A6) in the Appendix section. The three kinds of MAC calculated in this study

are total mass absorption cross-section (MACtotal), BC mass absorption cross-section (MACBC), and coating mass absorption

cross-section (MACcoating).

3 Machine learning method for predicting optical properties of BC fractal aggregates160

As mentioned in Section 1, several high-impact applications, such as climate modeling (Jacobson, 2001), depend on accurate

optical properties for specific BC particles. Hence, we propose to train an ML model on a pre-computed database containing

physicochemical and corresponding optical properties of BC fractal aggregates at several life cycle stages. This model will learn

patterns and structures within the data and should generalize to unseen data values when used in applications, as evidenced by

the success of ML in several domains (Radford et al., 2021; Ramesh et al., 2022). In this work, we train kernel ridge regression165

and a multi-layer perceptron on the database introduced in Section 2. The following sections detail our data processing routines,

models, and evaluation procedures.

3.1 Data pre-processing

As mentioned in Section 2.2, not all physical properties in the database are independent of each other, as some can be derived

from others using simple formulae. Including all properties as inputs for the ML model will thus present it with redundant170

information, increasing its computational overhead and possibly even harming its performance. Therefore, we use only a subset

of the database’s properties as input for our ML models: Wavelength (λ), fractal dimension (Df ), fraction of coating (fcoating),

primary particle size (a), number of primary particles (Npp), volume equivalent radii (ri and ro), and mobility diameter (Dm).

Similarly, a BC fractal aggregate’s optical properties are also not independent. Thus, we make the ML model predict only

the following three properties and compute the rest using the formulae in Appendix A1: absorption efficiency (Qabs), scattering175

efficiency (Qsca), and asymmetry parameter (g).

After feature selection, we transform input features using the Box-Cox transformation (Box and Cox, 1964), where we

choose the parameter λ by maximum-likelihood estimation. We also tried to apply the Box-Cox transformation to the tar-

get features, but since this did not improve results, we decided not to use any transformation on the target features for the

experiments that we report in Section 4.180
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3.2 Kernel ridge regression

Given a labeled dataset of N ∈ N points {(x(1),y(1)),(x(2),y(2)), . . . ,(x(N),y(N))} ⊂ RD ×RD′ , the regression problem

consists of finding a function f : RD → RD′ such that f(x(n))≈ y(n) for all n ∈ {1, . . . ,N}. Kernel ridge regression (KRR)

(Shawe-Taylor and Cristianini, 2004) learns a function of the form f(x)d =
∑N

n=1 α∗ndk(x(n),x), where k : RD ×RD → R

is a positive semidefinite kernel function (Cortes and Vapnik, 1995) and α∗ ∈ RN×D′ is a solution of the following convex185

optimization problem:

min
α∈RN×D′

λTr(αT Kα) + ∥YT −Kα∥2Fro, (2)

where K ∈ RN×N is the so-called kernel matrix defined by Kij = k(x(i),x(j)), λ ∈ R+ is a trade-off parameter that controls

the influence of the regularization term, and Y = (y(1), . . . ,y(N))T ∈ RN×D′ . Note that Eq. (2) has a closed-form solution:

α∗ := (K+ λIN )−1Y. (3)190

Popular choices for the kernel function include the polynomial kernel k(x,x′) = (axT x′+ b)c, where a,b ∈ R∗ and c ∈ N

are parameters, and the Gaussian or radial basis function (RBF) kernel

k(x,x′) = exp
(
−γ∥x−x′∥22

)
, (4)

where γ ∈ R+ is a parameter called bandwidth.

We use scikit-learn’s KRR implementation2 with the RBF kernel for our experiments. This method has two hyperparameters195

that need tuning: the RBF kernel’s γ ∈ R+ and λ ∈ R+ (see Eq. (2)). We optimize hyperparameters using grid search—please

see Table B1 for the grid and Section 3.4 for more detailed information on our evaluation procedure.

3.3 Artificial neural networks

Artificial neural networks (ANN) constitute one of the founding pillars of ML’s success during the last ten years. Originally,

their design was inspired by the structure of neurons inside the nervous system of several organisms (Rosenblatt, 1958). Most200

designs used in practice nowadays abandoned that idea, but the name remains.

In our experiments, we use a feed-forward ANN, sometimes also called multi-layer perceptron (MLP). It consists of an

arbitrary number (L≥ 2) of layers, of which the first is called input layer, the last is called output layer, and all layers in

between are called hidden layers. Each layer consists of a certain number of neurons, which are connected to the neurons in

the previous and the following layer205

Formally, we can define an MLP as a function f : RD → RD′ that is composed of L− 1 layer functions, i.e., f(x) :=

f (L−1)(f (L−2)(. . .f (1)(x) . . .)), where each f (l) : RD(l) → RD(l+1)
represents a connection between two layers. They are

defined as f (l)(x) := σ(l)(W(l)x + b(l)), where W(l) ∈ RD(l+1)×D(l)
,b(l) ∈ RD(l+1)

are learnable parameters, and σ(l) is a

so-called activation function that is applied separately to each element of its input vector. Common choices for σ(l) include,
2https://scikit-learn.org/stable/modules/generated/sklearn.kernel_ridge.KernelRidge.html
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for example, the rectified linear unit (ReLU) σ(l)(x) = max(x,0) or the tanh function. We use the same activation function210

for each layer except the last, where we always use the identity function, i.e., σ(L−1)(x) := x. Finally, D(l) ∈ N denotes the

number of neurons in layer l, with D(1) = D and D(L) = D′.

The number of hidden layers, the number of neurons in those hidden layers, and the activation function are usually chosen

by a human before training a neural network. Together, they define the architecture of the MLP. We can learn values for the

parameters W := (W(1), . . . ,W(L−1)) and b := (b(1), . . . ,b(L−1)) by minimizing a so-called loss functionL : RD′×RD′ → R215

over a dataset:

min
W,b

1
N

N∑

n=1

L(f(x(n)),y(n)). (5)

When solving a regression problem, the most common choice for L is the squared loss L(ŷ,y) := ∥y− ŷ∥22, but practitioners

sometimes use other loss functions as well, for example, the Huber loss (Huber, 1964):

L(ŷ,y) =
D′∑

d=1





1
2 (yd− ŷd)2 if |yd− ŷd| ≤ δ

δ
(
|yd− ŷd| − 1

2δ
)
, otherwise,

(6)220

where δ ∈ R+ determines the cut-off point between squared and absolute loss and is usually chosen as δ = 1. The entire

procedure of adapting the ANN’s parameters using a given dataset is called training in the ANN literature.

Note that, in general, Eq. (5) is not convex and does not have a closed-form solution. Hence, practitioners use gradient-

based optimization methods, i.e., variants of mini-batch stochastic gradient descent (SGD) (Bottou et al., 2018), to find a local

minimum of Eq. (5).225

For our experiments, we implemented an MLP using keras3. Table B2 contains the hyperparameter grid for the MLP’s

architecture and training procedure.

3.4 Evaluation procedure

After preprocessing, we split the database into a training and a test set. Models perform their training procedures and hyperpa-

rameter tuning on the training set only, and we then evaluate the model’s performance exclusively on the test set. We consider230

three different methods of performing this split—each one intends to measure another aspect of the model’s performance:

1. Random split: We randomly assign each point in the database to either the training or test set. Note that we use 30% of

the data for the test set and the rest for the training set. Using this split, the training and test set’s feature distribution

should be similar. Thus, measuring the performance on the test set produces a general measure of the model’s capability

to learn the underlying patterns in the data.235

3https://keras.io/
1https://keras.io/api/layers/activations/#sigmoid-function
2http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
3https://keras.io/api/losses/regression_losses/#logcosh-class
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2. Interpolation split: Here, we choose a feature and a certain range in the middle of that feature’s range and choose

all data points within that range as the test set. To achieve high test scores, the model must, therefore be capable to

interpolate predictions for data points it has not seen during training. Table B3 shows the features and ranges used for

the interpolation split.

3. Extrapolation split: Similar to the interpolation split, we also consider choosing a test set at the boundaries of certain240

features. This measures the model’s extrapolation capabilities. Table B4 shows the features and ranges used for the

extrapolation split.

We use the mean absolute error (MAE) as our primary performance metric: given a dataset D ⊂ RD ×RD′ , and our

prediction model f : RD → RD′ we can compute the MAE as follows:

MAE(f,D) =
1
|D|

∑

(x,y)∈D
∥y− f(x)∥1 , (7)245

where ∥z∥1 :=
∑D′

d=1|zd| is the L1-norm.

We split the training set once more into a train and a validation set using the random split method during the training

phase. Our models then train on the train set for all possible hyperparameter configurations defined in the grid, and we

record the MAE on the validation set for each combination. Finally, we choose the combination with the lowest MAE

and evaluate the corresponding model’s MAE on the test set.250

4 Performance of the machine learning models

The MAEs for our experiments are reported in Table 1. In the case of the random split, both ML models are quite

accurate, with the percentage of MAEs ranging from 0.1 to 0.4 % when compared to the feature range. The comparison

of the two ML methods for random split showed that KRR generally results in a lower MAE for predictions of Qabs and

Qsca. Contrary to this, the ANN was able to predict g with a lower MAE. In line with expectations, the MAE for the255

splits based on interpolation and extrapolation is somewhat higher. The errors, however, are still considered relatively

minor when compared to the features’ range. The extrapolation and interpolation experiments were used to test the

performance of the ML algorithm under various scenarios of data available for training. The ML models we publish for

use in applications were trained on the entire dataset using the best parameters from the random split experiments. As a

result, the errors should be similar to those we report for the random split here.260

In Fig. 3, the error distributions for the ML methods are presented for different experimental scenarios when the data is

split according to the parameter fractal dimension. The median error is close to zero for the random and interpolation

splits, meaning that our models do not generally over- or underestimate any optical value. The distribution of errors

(excluding outliers) for the random and interpolation splits is relatively narrow, indicating that most test points have

minor errors. In the extrapolation case, both ML models exhibit bias, such as overestimation of Qsca by the ANN and265
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Table 1. Mean absolute errors of the predicted optical properties for different experiments. The training data for the interpolation split consists

of fractal dimensions in Df = [1.5,2.1)∪ (2.5,2.9], whereas the extrapolation split uses Df = [1.5,2.5).

Optical property
Random split Interpolation split Extrapolation split

Feature range
KRR ANN KRR ANN KRR ANN

Qabs 0.0022 0.0039 0.0122 0.0287 0.0329 0.0354 0− 2

Qsca 0.0019 0.0031 0.0224 0.0466 0.0393 0.0939 0− 2

g 0.0044 0.0038 0.0429 0.0289 0.0879 0.0485 0− 1

Figure 3. Boxplots summarizing the error between the predicted value (Q̂abs, Q̂sca, ĝ) and the true value for three optical properties. The

training data for the interpolation split consists of fractal dimensions in Df = [1.5,2.1)∪ (2.5,2.9], whereas the extrapolation split uses

Df = [1.5,2.5). Note that we do not show outliers to prevent unnecessary clutter.
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Figure 4. Comparison of the predicted optical properties with their true values when the ML models are trained on a random subset of data.

overestimation of g by the KKR. However, the mean absolute error, even for the extrapolation split, is 1.5 to 8 %, which

is still within reasonable limits. The interpolation and extrapolation results are similar if training and test data are split

according to the parameter of the fraction of coating. A more detailed discussion can be found in Fig. C1 in the appendix.

Overall, the narrow box plots of the errors in the random split demonstrate the effectiveness of the ML algorithms for

predicting the optical properties of coated BC fractal aggregates.270

A one-to-one comparison was performed between the estimates and true values to better understand how the ML methods

perform in predicting optical properties. Fig. 4 compares the estimated and true values for the wavelength of 660 nm

when the training and test data are randomly split. The values of Q̂abs, Q̂sca, ĝ obtained from the KRR and ANN methods

are compared to the true values derived from the MSTM method. The performance of both ML methods was studied for

BC fractal aggregates with three representative morphologies, and coating fractions (Df = 1.5 & fcoating = 0%; Df = 2.1275
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Figure 5. Absorption efficiency (Qabs) at a wavelength of 660 nm predicted using KRR and ANN for nine representative BC aggregates

with a variety of morphologies (represented by Df ) and coatings (represented by fcoating). Both models were trained on a random split of

training data.

& fcoating = 50%; Df = 2.7 & fcoating = 90%). There was reasonable agreement between the KRR and the ANN for all

the sub-cases. Therefore, the machine learning models appear to be applicable in a broader context. The model does not

overfit with different coating fractions and complex morphologies.

During their lifetime, BC fractal aggregates undergo complex changes in size, composition, and morphology due to at-

mospheric processing. Figure 5 shows a visualization of how the ML predictions compare to the MSTM reference for280

different aging scenarios for BC fractal aggregates. It compares the estimated and true values of the optical properties

for the random split. The models trained using a random split of training data generally show a good agreement with the

ground-truth data over the entire range of Dm. Only in the case of fcoating = 90%, the ANN seems to underestimate the
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Table 2. Training time for 18526 samples in the dataset and prediction time per sample in seconds. Values were recorded on a machine with

Intel(R) Core(TM) i7-9750H CPU, 8 GB RAM, and NVIDIA GeForce GTX 1650 GPU.

ML model Training time Prediction time

KRR 33.3s 0.0006s

ANN 1770s 0.0005s

true value of Qabs for intermediate values of Dm. Appendix C3 contains similar plots for the interpolation and extrapola-

tion split. In general, errors tend to increase with increasing aggregate sizes for the interpolation and extrapolation splits.285

The ML models we publish are based upon random split experiments, and Fig. 5 shows how well both the ML methods

provide accurate estimates of the optical properties of BC fractal aggregates at each aging stage.

Apart from making accurate predictions, our ML models should also be fast to provide a benefit over time-consuming

simulations. Hence, we recorded the time needed to train on the entire training dataset and the time for making a single

prediction in Table 2. As a result, the prediction time of both algorithms is less than one millisecond, which is a drastic290

improvement compared to the MSTM method, which can take up to 24 hours, depending on the particle. It should be

noted that the prediction time for the ANN does not depend on the input data. Training the models takes comparatively

longer, but it is usually done offline. Therefore, it is irrelevant for users using the pre-trained models we provide for their

applications (see Section 7).

5 Atmospheric implications295

It is important to incorporate the fractal morphology of BC global model calculations as the BC radiative forcing can

decrease up to 61% when a particle becomes more compact and aged (Romshoo et al., 2021). In the past, there has

been hesitation about using realistic fractal morphologies when simulating BC optical properties due to the complexity

involved in the simulations and the cost of the computations. Our ML algorithms address both problems, encouraging

the use of realistic fractal morphologies in large-scale applications. When using optical models, the computation time300

could be as long as one day for certain complexly shaped BC fractal aggregates. Using our advanced algorithms, we can

predict the same optical properties in just a matter of seconds.

The advantage of using such ML algorithms is the possibility of simulating the optical properties of BC fractal aggregates

at any desired size, morphology, and coating fraction or organics. Previous studies have trained ML models on similar

datasets; however, they considered the fractal aggregates to be purely BC in their experiments (Luo et al., 2018; Lamb and305

Gentine, 2021). In the atmosphere, BC fractal aggregates are primarily found in conjunction with other materials, such

as organic carbon. It is, therefore, more relevant to predict the optical properties of BC fractal aggregates with organic

coatings for atmospheric applications. To give an example of applying the ML algorithm to real-world atmospheric
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A. B.

Figure 6. Single scattering albedo ω for coated BC particles generated in a laboratory study at different forganics (Romshoo et al., 2022). (A)

compares the ω̂ML with the measured ω from the laboratory experiment. (B) compares the ω̂Mie with the measured ω.

research, we predicted the optical properties of laboratory-generated soot for experiments described in the Table. 1 of our

previous study (Romshoo et al., 2022). Figure 6A compares the ML algorithm predicted single scattering albedo (ω̂ML)310

with the measured ω from the laboratory experiment. The ω̂ML predictions are in good agreement with the measured

results for a range of forganics going up to 55%. On the contrary, Figure 6B demonstrates that if the conventionally used

Mie-core-shell theory is used, the predictions are overestimated by a large margin. The ML predictions of MAC are

also compared to the measured MAC and Mie-based predictions, whose results are given in Figure C7 of the Appendix.

The predictions ˆMACML were found to be less sensitive to the change in Dmob. Due to a lack of monodisperse mass315

measurements, comparing the predictions and measured values is not so straightforward. However, one can see that the

discrepancies in the ML-based predictions of MAC are comparatively lower than the Mie-derived MAC values.

Based on the success of the ML-based approach in predicting the optical properties of coated BC particles, it has great

potential for future development to predict the optical properties of mixtures of BC and other aerosols. Because such a

study would be exhaustive, we initially tested this approach on BC fractal aggregates and organic coatings to determine320

its effectiveness. Further research is necessary to develop an ML algorithm with features representing different morpho-

logical shapes and other chemical compositions, such as inorganics. In the long run, the goal should be to develop an ML

algorithm that can be used to integrate all atmospheric aerosols into global climate models. To develop such a universal

algorithm for all atmospheric aerosols, we must incorporate the conventional spherically shaped particles into the current

prediction algorithm to represent the fraction of aged aerosols.325
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5.1 Limitations and future challenges

The experiments conducted for this study show that our ML methods predict the optical properties of BC fractal ag-

gregates with high accuracy as long as they are trained on sufficient data. However, the interpolation and extrapolation

experiments show that the performance of both KRR and ANN significantly deteriorates when entirely removing cer-

tain ranges from the training data. This suggests that our models possess only limited generalization capabilities. Still,330

it should be noted that we train the models for practical use on the entire physically feasible range of Df and fcoating.

Hence, those models will not have to extrapolate for any reasonable inputs.

Our models treat the wavelength λ as a continuous variable, meaning they should support computing optical properties at

wavelengths that are not part of the training data. However, we did not test the models’ generalization capabilities about

the wavelength since omitting just one wavelength from the training data would reduce the dataset size by one-third.335

Generating more ground truth data for other wavelengths requires refractive indices of BC and organics for that specific

wavelength, which are unavailable in the literature. Even if they were available, it would be time-consuming as MSTM

simulations can take a long time to compute. Nevertheless, examining the models’ generalization capabilities on other

wavelengths in the future would be interesting.

Both KRR and the ANN provide only a single-point prediction for each input. In particular, their estimate does not340

quantify any uncertainty in the prediction. Bayesian ML methods such as Gaussian Process Regression (Rasmussen and

Williams, 2005) can provide information about the uncertainty of a prediction via credible intervals as they return an

entire probability distribution instead of a single point estimate. Thus, it would be interesting to examine Bayesian ML

for the prediction of BC fractal aggregates’ optical properties. This method could be further developed for reporting the

predictions for an ensemble of BC-containing aerosols with various physicochemical properties. However, applying them345

directly to our problem is not trivial since the assumptions made by their statistical model (e.g., target variables follow a

multivariate Gaussian distribution) are often violated in practice. Therefore, we leave the application of Bayesian ML to

the BC aerosol problem to future work.

6 Conclusions

The present study demonstrated that the predictions of BC optical properties can be improved by incorporating their350

realistic morphologies. Unlike the computationally intensive simulations of complex scattering models, the ML-based

approach accurately predicts optical properties in fractions of a second. In conjunction with a laboratory dataset, it was

shown that optical properties like single scattering albedo ω and mass absorption cross-section (MAC) can be predicted

with greater accuracy than with a Mie-based approach. Using an extensive database for the physicochemical and optical

properties of BC fractal aggregates, we trained two ML models—KRR and ANN—that can be used to predict the optical355

properties of coated BC aggregates at all aging stages. In particular, we could accurately predict the optical properties
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in the visible spectrum for BC fractal aggregates of any desired size, shape, and fraction of organic coating. Thus, this

work illustrates the use of this realistic approach in real-world atmospheric research applications.

We summarize the key conclusions of the study as:

– Active investigation area: BC is a highly relevant and active field of research, as it affects the climate system360

and human health. Global climate models require information about the optical properties of BC to simulate their

radiative forcing. The BC research will benefit from using this ML algorithm to generate the optical properties of

BC based on more realistic fractal aggregates.

– Broader application: The ML algorithm can predict the optical properties absorption efficiency, scattering effi-

ciency, and asymmetry parameter for a wide range of BC fractal aggregates with physiochemical properties spec-365

ified by particle size, morphology, and coating fraction. Previous studies did not consider the critical parameter of

coating fraction in their ML models. Therefore, even though we discuss the results in terms of Number of primary

particles (Npp), the user is additionally able to specify the particle size in terms of Volume equivalent diameter

(Rv) or Mobility diameter (Dm) depending on numerical or in-situ based nature of the study. We tested the use of

the ML algorithm for predicting the scattering properties of laboratory-generated soot particles and found that it370

was well in agreement with the measured values.

– User-friendly: We published a simple Python script that allows users to predict optical properties for BC fractal

aggregates using our pre-trained models at GitHub4. The user must specify the physicochemical properties of a

BC fractal aggregate as a .csv file, from which the prediction script generates the corresponding optical properties

using either KRR or ANN.375

– Low computational and energy costs: Our ML models have a low computational cost, taking fractions of a second

to provide the predictions on a run-of-the-mill desktop PC. The same optical properties could take more than 24

hours to be generated when using a T-matrix optical model. Using such ML algorithms will thus reduce the energy

expenditures associated with running optical models on supercomputers.

– Citability and reproducibility: The dataset used for developing the ML algorithm is available for download at380

Zenodo (Romshoo et al., 2023a). Furthermore, the baseline experiments can be reproduced with the code that is

openly available on GitHub5.

In summary, we demonstrated the feasibility of incorporating the realistic morphology of BC to improve their predictions

of optical properties using a first-of-its-kind machine-learning approach. This ML-based approach constitutes a signifi-

cant step forward in BC aerosol research in two ways: first, it is the first attempt to provide optical properties of coated385

BC fractal aggregates at different stages of atmospheric aging using realistic representations. Second, this approach sig-

nificantly reduces the heavy computational costs of using previous complex scattering models. Previous studies of BC

4https://github.com/jaikrishnap/Machine-learning-for-prediction-of-BCFAs
5https://github.com/jaikrishnap/Optical-properties-of-black-carbon-aggregates
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avoid using complex scattering theories because of the high computational costs and prefer the more simplistic Mie the-

ory. This research will be further developed in the future with the final goal of accurately predicting the optical properties

of any mixture of atmospheric aerosols.390

7 Code and data availability

The dataset of simulated physio-chemical and optical properties that we describe in Section 2 is available at https:

//doi.org/10.5281/zenodo.7523058 (Romshoo et al., 2023a). In case they want to reproduce any of the results in this

work, readers may find the entire source code that we used to perform the ML-based experiments and generate figures

included in this work on https://github.com/jaikrishnap/Optical-properties-of-black-carbon-aggregates (Romshoo et al.,395

2023b).

Furthermore, we provide a Python script that predicts the optical properties of BC fractal aggregates using the ML-based

models we trained in a GitHub repository https://github.com/jaikrishnap/Machine-learning-for-prediction-of-BCFAs

(Romshoo et al., 2023c). In order to run the prediction script, the physio-chemical properties need to be provided as

a .csv file that contains the fractal dimension Df , the fraction of coating fcoating, and the wavelength (λ) at which the400

optical properties should be calculated. Users may specify the particle size either by specifying the number of primary

particles (Npp) or the mobility diameter (Dm). The prediction script will then generate a .csv file with the corresponding

optical properties for the provided physio-chemical properties. Please check the README file inside the repository for

more detailed information on using the script.
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Appendix A: Details about the physiochemical and optical properties of BC fractal aggregates405

A1 Formulae

The volume equivalent radius (r) is defined as the radius of a sphere having the same volume as the BC fractal aggregate,

given as:

r = a 3
√

Npp (A1)

where Npp is the number of primary particles, and a is the radius of a single primary particle. The outer volume equivalent410

radius (ro) was calculated for the whole BC aggregate and the coating using ao. The inner volume equivalent radius (ri)

was calculated using ai for the BC aggregate without the coating, i.e., pure BC.

The mobility diameter of a sphere (Dm) was defined by Sorensen (2001) as:

Dm = 2ao

(
10−2x+0.92

)
Nx

pp, (A2)

where Npp is the number of primary particles, and ao is the radius of a primary particle with coating, x is the mobility415

mass scaling exponent given by x = 0.51Kn0.043,0.46 < x < 0.56. Kn is the Knudsen number, which is the ratio of the

molecular free path to the agglomerate mobility radius. The error estimated in the mobility mass scaling exponent (x) is

±0.02.

The geometric cross-section (Cgeo) is the area of the cross-section of the volume-equivalent sphere, given as:

Cgeo = πro
2 (A3)420

The optical cross-sections (Cext/abs/sca) are defined as the product of efficiency (Qext/abs/sca) and geometric cross-section

(Cgeo) as:

Cext/abs/sca = Qext/abs/scaCgeo (A4)

The single-scattering albedo (ω) is derived from the ratio of the scattering efficiency (Qsca) to the extinction efficiency

(Qext) as:425

ω =
Qsca

Qext
(A5)

The total mass absorption cross-section (MACTotal), BC mass absorption cross-section (MACBC), and coating mass

absorption cross-section (MACCoating) were calculated from the ratio of (Cabs) with total mass (mTotal), BC mass (mBC),

and coating mass (mCoating), respectively, as:

MACtotal/BC/coating =
Cabs

mtotal/BC/coating
(A6)430
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A2 Range of features and constants

Table A1. Upper and lower bounds of some features from the database of physicochemical and optical properties of black carbon fractal

aggregates.

Parameter Lower limit Upper limit

Wavelength (λ) 467 660

Fractal dimension (Df ) 1.5 2.9

Fraction of coating (fcoating) 0 90

Primary particle size (a) 15 29

Number of primary particles (Npp) 1 1000

Outer volume equivalent radius (ro) 12 290

Inner volume equivalent radius (ri) 12 150

Mobility diameter (Dm) 17 1561

Extinction cross-section (Cext) 0.043 3.02

Absorption cross-section (Cabs) 0.041 1.75

Scattering cross-section (Csca) 0.00038 1.82

Asymmetry parameter (g) 0.00036 0.91

Single scattering albedo (SSA) 0.00030 0.776

Mass absorption cross-section (MAC) 3.89 24.5

Table A2. Refractive indices (both real and imaginary parts) of BC and organics at various wavelengths in the visible range (Kim et al.,

2015).

Parameter
Wavelength (nm)

467 530 660

nBC 1.92 1.96 2.00

kBC 0.67 0.65 0.63

ncoating 1.59 1.47 1.47

kcoating 0.11 0.04 0.00
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Appendix B: Details about the machine learning methods

Table B1. Hyperparameter values for the kernel ridge regression (KRR) experiments.

Parameter Values

RBF kernel bandwidth (γ) 0.0001,0.001,0.01,0.05,0.1,

0.5,0.75,1

Regularization coefficient (λ) 0.0001,0.001,0.01,0.05,0.5,

0.75,1

Table B2. Hyperparameter values for the multi-layer perceptron (MLP) experiments.

Parameter Values

Number of layers (L) 3,4, . . . ,12

Number of neurons (D(l)) 1,8,16,32,64,128,256,512,1024

Activation function (σ(l)) id, ReLU, Sigmoid6, tanh, ELU (Clevert et al., 2016), Leaky ReLU (Maas et al., 2013)

Optimizer SGD, Adam (Kingma and Ba, 2015), RMSProp7

Learning rate 0.001,0.005,0.075,0.01,0.05,0.075,0.1

Loss function (L) MSE, MAE, Huber, LogCosh8

Table B3. Training range and test range of the features during the interpolation split.

Feature Range Test range Training range

Df [1.5,2.9] [2.1,2.5] [1.5,2.1)∪ (2.5,2.9]

fcoating [0,90] [35,50] [0,35)∪ (50,90]

Table B4. Training range and test range of the features during the extrapolation split.

Feature Range Test range Training range

Df [1.5,2.9] [2.5,2.9] [1.5,2.5)

Df [1.5,2.9] [1.5,1.9] (1.9,2.9]

fcoating [0,90] [75,90] [0,75)

fcoating [0,90] [0,15] (15,90]
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Table B5. Maximum errors of different splits for their test sets.

Optical property
Random split Interpolation split Extrapolation split

Feature range
KRR ANN KRR ANN KRR ANN

Qabs 0.17 0.34 0.38 0.34 0.23 0.21 0− 2

Qsca 0.14 0.17 0.32 0.44 0.55 1.42 0− 2

g 0.14 0.22 0.46 0.44 0.42 0.32 0− 1

Appendix C: Additional figures

C1 Error Boxplots

Fig. C1 shows the residuals for the machine-learning methods for the three splits related to the feature fcoating: random,435

extrapolation (training data fcoating = [0,75)), and interpolation (training data: fcoating = [0,35)∪(50,90]. When the train-

ing and testing data is randomly split, we see that residual errors are concentrated near zero for all intervals of fcoating

similar to Fig. 3. The errors from the KRR and ANN are comparable in the random split. For the case of interpolation

split, the errors from both ANN and KRR models are comparatively higher for all the three optical properties, i.e., Qabs,

Qabs, and g. It was noted in the errors from the interpolation split that KRR performs better for predicting the Qabs,440

whereas the ANN performs better for g predictions. The errors in the Qabs, Qabs, and g from the extrapolation split were

the highest. The error is largest for the predictions when fcoating = 90, which is the case farthest away from the training

data during an extrapolation split. The relative performance of the ANN and KRR are comparable to those observed in

the interpolation split.

C2 Point-wise comparison of predicted and true values445

Fig. C3 and Fig. C4 compare the machine-learning predictions to their true values for the cases where the data was

excluded while training the ML model. In the Fig. C3, ML predictions were made after removing the intermediate

values of the Df feature (i.e., 2.1, 2.3, 2.5) from the training data. It was observed that the predictions Q̂abs fitted

well with the true values, especially for the KRR method. However, the predictions Q̂sca fluctuate from the true value

Qsca as the approach maximum values above 1. For predictions ĝ, the ML methods ANN and KRR perform slightly450

differently. In the case of extrapolation split, as shown in Fig. C4, the predictions deviated from their true values for

Df = 2.7,2.9 since the ML models did not see the data. However, we can see that for Df = 2.5 (first row), all the

predictions are in better agreement with their true values since it was present in the training data. The predictions Q̂abs

and Q̂sca showed reasonable agreement in the case of Df = 2.7. The predictions Q̂sca for the unseen Df features

were observed to be smaller than their true values. The predictions Q̂abs, Q̂sca, ĝ are most inconsistent with their true455

values when the Df = 2.9 which is the case farthest away from the training data. Therefore, it is demonstrated that there
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Figure C1. Error between the predicted and true values for three optical properties. The residuals are shown when models are trained on data

with different ranges of fractions of coating (fcoating). The residuals for both KRR and NN predictions are presented in each panel.

is comparatively higher uncertainty for predicting optical properties for features out of the range of the training data.

Further, the performance of the KRR and ANN varied for different optical properties in such cases of interpolation and

extrapolation split. The interpolation split performed better for predicting the optical properties out of the range of the

training data. Therefore, adding more data in the training set for boundary values to let it interpolate would result in460

better predictions.

C3 Line plots showing performance as aggregate size changes

Fig. C5 compares the machine-learning predictions to their true values for interpolation split. The predictions for the case

Df = 2.3 (middle row) showed the highest deviations from the true values since it is the farthest point in the training
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Figure C2. Error between the predicted value (Q̂abs, Q̂sca, ĝ) and the true value for three optical properties for various cases of mobility

diameter (Dmob). Note that we do not show outliers to prevent unnecessary clutter.

data for the interpolation split. From the Q̂abs results, the KRR predictions were reasonable for the entire size range.465

The predictions for Q̂sca were also reasonable for KRR. However, after the particle size increased to larger than 500

nm, the prediction of Q̂sca using KRR was underpredicted. The prediction of Q̂sca using ANN showed a size-dependent

behavior, under-predicting the results for certain particle sizes, after which there is an over-prediction. Similar size-

dependent behavior was observed in the predictions ĝ from ANN and KRR. The ĝ predictions showed deviations from

their true values as the particle size increased. In the case of interpolation split, the overfitting or underfitting is generally470

more pronounced in the larger particle size (> 500 nm). The explanation for this could be the lower resolution of the

training data for particle size > 500 nm, which was a limitation of large computation time for larger particles and more

coating fraction.
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Figure C3. Comparison of the predicted optical properties with their true values for the interpolation split when the ML models have

trained on data with boundary fractal dimensions: Df = 1.5,1.7,1.9,2.7,2.9 and tested the model on data with inner fractal dimensions:

Df = 2.1,2.3,2.5).

Similarly, Fig. C6 show the machine-learning predictions compared to the true values for the extrapolation split. To

study the performance of the KRR and ANN, the results for Df = 2.9 are interesting since they are the farthest from475

the training data. The deviations of the Q̂abs are more from the true values in the case of the KRR, which showed better

performance in the interpolation-split. However, the results for Df = 2.5 and Df = 2.7 show reasonable results since

they are closer to the training data set. The predictions Q̂sca were lower than the true values for ANN, especially as the

particle size increased. The prediction ĝ was larger than its true value in the case of extrapolation-split. However, the

performance of predicting ĝ from KRR showed an interesting size dependence over particle size unique to this split.480

When particle sizes were smaller, ĝ was higher than the true value, decreased, and returned to higher levels once a
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Figure C4. Comparison of the predicted optical properties with their true values for extrapolation split when the ML models are trained

on data with smaller fractal dimensions: Df = 1.5,1.7,1.9,2.1,2.3 and tested the model on data with boundary fractal dimensions: Df =

2.5,2.7,2.9).

certain threshold was reached. In general, for the results when the fcoating is 90, which is the upper limit of the feature,

the results for Q̂abs, Q̂sca, and ĝshowed an expected higher deviation from their true values for both interpolation and

extrapolation split.
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Figure C5. Optical properties of BC fractal aggregates predicted using machine learning methods KRR and NN for the interpolation split:

when models have trained on data with boundary fractal dimensions Df = 1.5,1.7,1.9,2.7,2.9 and tested the model if it fits for the interme-

diate values of fractal dimensions Df = 2.1,2.3,2.5).The three columns show the predicted values of absorption efficiency(Qabs), scattering

efficiency(Qsca), and asymmetry parameter(g). Each row corresponds to the predictions for the intermediate values of fractal dimensions

Df = 2.1,2.3,2.5.
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Figure C6. Optical properties of BC fractal aggregates predicted using machine learning methods KRR and NN for the extrapolation split:

when models are trained on data with smaller fractal dimensions Df = 1.5,1.7,1.9,2.1,2.3 and tested the model on data with higher fractal

dimensions Df = 2.5,2.7,2.9).The three columns show the predicted values of absorption efficiency(Qabs), scattering efficiency(Qsca), and

asymmetry parameter(g). Each row corresponds to the predictions for the left-out higher fractal dimensions Df = 2.5,2.7,2.9.
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Figure C7. Mass absorption cross-section (MAC) for coated BC particles generated in a laboratory study at different Dmob (Romshoo et al.,

2022). (A) compares the ˆMACML with the measured MAC from the laboratory experiment. (B) compares the ˆMACMie with the measured

MAC.
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